Выбор редакции
17 октября, 10:02

Оптимизация аптек: что мы сделали с помощью математики

Оказалось, что аптечный бизнес достаточно прост в плане старта (аптека крупной франшизы открывается чуть ли не по механике «далее-далее-ок»), но достаточно сложный в управлении. При этом таким он не кажется. Сложная часть в управлении запасами, то есть в поставке лекарств, медсредств и прочего в конечную розничную точку. В реальности делают это люди руками и часто жёстко лажают. Очень часты ситуации недозаказа товара (когда нужного ходового лекарства просто нет в аптеке), перезаказа (товар поставляется на пару ближайших лет) или неправильного распределения по сети аптек (в одной нет, а в другой — на шесть месяцев запаса). Таблетки компактные, выкладка в аптеках — хорошо, если 5 % от товарного запаса, поэтому восемь–десять миллионов рублей можно запросто спрятать даже на 15 квадратных метрах в ящиках. А потом у этих лекарств внезапно уже через год закончатся сроки годности. Проблема — в ручном управлении запасами и в неправильном прогнозировании спроса: рынок таков, что часто в начале года подписываются обязательства на год вперёд, и производитель впихивает тонны неходового товара аптечным сетям. Конечно же, в этой ситуации очень не хватает математической модели. Ну мы с ней и пришли. В процессе сделали ещё несколько чудесных открытий про рынок. Читать дальше →

15 октября, 18:44

Дайджест новостей машинного обучения и искусственного интеллекта за сентябрь

Привет, Хабравчане! Отфильтровав для вас большое количество источников и подписок — собрал все наиболее значимые новости из мира машинного обучения и искусственного интеллекта за сентябрь. Не забудьте поделиться с коллегами, или просто с теми, кому интересны такие новости. Для тех, кто не читал дайджест за август, можете прочесть его здесь. Итак, а теперь дайджест за сентябрь: 1. Ученые EPFL разработали мягкую искусственную кожу, которая обеспечивает тактильную обратную связь и — благодаря сложному механизму самочувствия — потенциально способна мгновенно адаптироваться к движениям пользователя. Читать дальше →

Выбор редакции
11 октября, 14:00

Создаем датасет для распознавания счетчиков на Яндекс.Толоке

Как-то два года назад, случайно включив телевизор, я увидел интересный сюжет в программе "Вести". В нём рассказывали о том, что департамент информационных технологий Москвы создает нейросеть, которая будет считывать показания счетчиков воды по фотографиям. В сюжете телеведущий попросил горожан помочь проекту и прислать снимки своих счетчиков на портал mos.ru, чтобы на них обучить нейронную сеть.  Если Вы — департамент Москвы, то выпустить ролик на федеральном канале и попросить людей прислать изображения счетчиков — не очень большая проблема. Но что делать, если Вы — маленький стартап, и сделать рекламу на телеканале не можете? Как получить 50000 изображений счетчиков в таком случае? Читать дальше →

Выбор редакции
10 октября, 19:21

Тематическое моделирование новостей с помощью факторного анализа

Привет, коллеги! Как из 20 000 новостей за 30 секунд выделить главные темы? Обзор тематического моделирования, которое мы делаем в ТАСС, с матешей и кодом. Читать дальше →

Выбор редакции
08 октября, 18:02

Подготовка данных в Data Science-проекте: рецепты для молодых хозяек

В предыдущей статье я рассказывала про структуру Data Science-проекта по материалам методологии IBM: как он устроен, из каких этапов состоит, какие задачи решаются на каждой стадии. Теперь я бы хотела сделать обзор самой трудоемкой стадии, которая может занимать до 90% общего времени проекта: это этапы, связанные с подготовкой данных -сбор, анализ и очистка. В оригинальном описании методологии Data Science-проект сравнивается с приготовлением блюда, а аналитик - с шеф поваром. Соответственно, этап подготовки данных сравнивается с подготовкой продуктов: после того, как на этапе анализа бизнес-задачи мы определились с рецептом блюда, которое будем готовить, необходимо найти, собрать в одном месте, очистить и нарезать ингредиенты. Соответственно, от того, насколько качественно был выполнен этот этап, будет зависеть вкус блюда (предположим, что с рецептом мы угадали, тем более рецептов в открытом доступе полно). Работа с ингредиентами, то есть подготовка данных - это всегда ювелирное, трудоемкое и ответственное дело: один испорченный или недомытый продукт - и весь труд впустую. Читать дальше →

08 октября, 11:28

ок.tech Data Толк #3: Рекомендательные системы

6 ноября в московском офисе компании Одноклассники состоится ок.tech Data Толк #3, в этот раз мы решили посвятить мероприятие рекомендательным системам. Вместе с коллегами из OK.ru, Joom и СколТеха поговорим про прошедший RecSys19, а также о теории, практике и трендах рекомендательных систем. Влад Грозин сделает обзор культовой конференции RecSys19. Евгений Фролов расскажет один из докладов о HybridSVD, которую используют для построения гибридных рекомендательных систем. Затем перейдем от теории к практике, и Андрей Кузнецов поделится практическим опытом улучшения рекомендательных систем для групп Одноклассников. Как всегда, после докладов будет дискуссия, где каждый сможет задать любой вопрос спикерам. Вести мероприятие будет Алексей Чернобровов. Ждем всех, кому интересна тема создания, улучшения и эксплуатации рекомендательных систем. Зарегистрироваться на мероприятие. Читать дальше →

Выбор редакции
07 октября, 09:14

«Золотое сечение» в экономике — 2

Здесь дополняется тема «Золотое сечение» в экономике — что это?», поднятая в прошлой публикации. Подойдем к проблеме предпочтительного распределения ресурсов со стороны, которая еще не затрагивалась. Возьмем самую простую модель генерации событий: бросание монеты и вероятность выпадения «орла» или «решки». При этом постулируется, что: Выпадение «орла» или «решки» при каждом отдельном броске равновероятно – 50 на 50% При большой серии бросков число выпадений каждой из сторон монеты приближается к числу выпадений другой. Это означает, что, записывая результаты предыдущих выпадений «орла» и ориентируясь на равновесие серии, можно ожидать выпадения «орла» (и невыпадения «решки») как следующего элемента серии с большей или меньшей вероятностью – в зависимости от результатов предыдущих выпадений. Что согласуется с опытом каждого, такую серию проводившего. Как показывает статистика (для избежание повторов см. примеры графиков в публикации), в разнообразных экономических системах — как и в опытах с монетой — наблюдается некое закономерно-вероятностное распределение расходов. И это эмпирическое распределение расходов крайне интересно представить как диаграмму Лоренца (см. иллюстрацию ниже в «Расходах компании»). При некоторых незначительных погрешностях ее аппроксимации эта кривая превращается в дугу окружности (правая нижняя четверть). Обширный статистический анализ распределения ресурсов свидетельствует о высокой воспроизводимости дуги окружности в разных областях экономики (опять же см. предыдущую публикацию) И степень близости имеющегося распределения расходов к этому эталонному позволяет судить о «здоровье» рассматриваемой экономической системы. Под «здоровьем» здесь понимается выживаемость системы и ее способность к развитию. Читать дальше →

Выбор редакции
04 октября, 13:25

[Из песочницы] Как технология in-memory изменила бизнес-аналитику

Примерно 5 миллисекунд проходит от запроса до ответа, если данные хранятся на жестком диске. SSD отвечает в 300 раз быстрее — за 150 микросекунд. Оперативной памяти требуется в 300,000 раз меньше времени — лишь 15 наносекунд.* Можно долго рассуждать о том, как бизнес-аналитика помогает финансам или логистике. Способов применить информацию много, все время появляются новые. Но принцип работы разных аналитических решений один и заключается он в том, чтобы соединить данные из разных источников и посмотреть на них вместе — то есть целиком. Чтобы воспользоваться информацией из нескольких источников, нужно к ним подключиться и извлечь данные. Но данные создавались разными способами, с разной периодичностью и хранятся в разных форматах. Поэтому прежде, чем визуализировать данные или передать другим системам для дальнейшей обработки, их придется объединить с помощью каких-то математических операций — трансформировать. Технология in-memory заключается в том, что для трансформации в оперативную память единовременно загружаются все данные из разных источников. После этого трансформацию можно выполнить «на лету», без запросов к диску. Например, кликом выбрать измерение и сразу получить график, который будет отображать значения показателей в нужном разрезе. Благодаря тому, что все данные уже в оперативной памяти, аналитическому приложению не нужно делать запросы к жесткому диску для получения новой информации. Это вступление должно помочь мне рассказать о том, как и почему менялись технологии, лежащие в основе современных аналитических решений. Читать дальше →

Выбор редакции
25 сентября, 22:01

Создание и чтение QR-кода на Python в 3 минуты (OpenCV и qrcode)

Сегодня будем создавать QR-код на Python, а также прочитать его с помощью OpenCV. Можно разбить статью на две части: создание QR-кода на Python. сканирование QR-кода с помощью OpenCV на видео. Читать дальше →

Выбор редакции
23 сентября, 13:17

[Из песочницы] Структура Data Science-проекта с высоты птичьего полета

Как узнать наверняка, что внутри у колобка? Может, ты его проглотишь, а внутри него река? © Таня Задорожная Что такое Data Science сегодня, кажется, знают уже не только дети, но и домашние животные. Спроси любого котика, и он скажет: статистика, Python, R, BigData, машинное обучение, визуализация и много других слов, в зависимости от квалификации. Но не все котики, а также те, кто хочет стать специалистом по Data Science, знают, как именно устроен Data Science-проект, из каких этапов он состоит и как каждый из них влияет на конечный результат, насколько ресурсоемким является каждый из этапов проекта. Для ответа на эти вопросы как правило служит методология. Однако бОльшая часть обучающих курсов, посвященных Data Science, ничего не говорит о методологии, а просто более или менее последовательно раскрывает суть упомянутых выше технологий, а уж со структурой проекта каждый начинающий Data Scientist знакомится на собственном опыте (и граблях). Но лично я люблю ходить в лес с картой и компасом и мне нравится заранее представлять план маршрута, которым двигаешься. После некоторых поисков неплохую методологию мне удалось найти у IBM — известного производителя гайдов и методик по управлению чем угодно. Читать дальше →

23 сентября, 10:42

Список полезных книг по анализу данных, математике, data science и machine learning

Хабр, привет! Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они будут полезны как новичкам, так и профессионалам. Для удобства можете читать здесь или использовать удобный google docs, в нем книги разбиты по столбцам и категориям. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами. Конечно, весь список книг неполный. Поэтому добавляйте в комментарии свои полезные ссылки на крутые книги, самые топовые из них я добавлю в список. Иллюстрация ADN Книги по анализу данных, математике, data science и machine learning: Читать дальше →

Выбор редакции
18 сентября, 13:54

Анализируем историю прослушивания в «Яндекс.Музыке»

Вот уже почти год я пользуюсь сервисом Яндекс Музыка и меня все устраивает. Но есть в этом сервисе одна интересная страница — история. Она хранит все треки, которые были прослушаны, в хронологическом порядке. И мне, конечно, захотелось скачать ее и проанализировать, что я там наслушал за все время. Читать дальше →

18 сентября, 11:45

[Перевод] Must-have алгоритмы машинного обучения

Хабр, привет. Этот пост — краткий обзор общих алгоритмов машинного обучения. К каждому прилагается краткое описание, гайды и полезные ссылки. Метод главных компонент (PCA)/SVD Это один из основных алгоритмов машинного обучения. Позволяет уменьшить размерность данных, потеряв наименьшее количество информации. Применяется во многих областях, таких как распознавание объектов, компьютерное зрение, сжатие данных и т. п. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных или к сингулярному разложению матрицы данных. SVD — это способ вычисления упорядоченных компонентов. Полезные ссылки: scipy.linalg.svd sklearn.decomposition.pca Вводный гайд: Учебное пособие по основному анализу компонентов Читать дальше →

10 сентября, 12:50

Дайджест новостей машинного обучения и искусственного интеллекта за август

Привет, читатель! Отфильтровав для тебя большое количество источников и подписок — собрал все наиболее значимые новости из мира машинного обучения и искусственного интеллекта за август. Не забудьте поделиться с коллегами, или просто с теми, кому интересны такие новости. Для тех, кто не читал дайджест за июль, можете прочесть его здесь. Итак, а теперь дайджест за август: 1. Российский человекоподобный робот пробирается на МКС. Российский космический корабль «Союз» состыковался с МКС. В капитанском кресле капсулы, предназначенной для перевозки пассажиров, сидел Skybot F-850, человекоподобный робот, созданный российским космическим агентством Роскосмос. Читать дальше →

Выбор редакции
10 сентября, 12:15

Книга «Data mining. Извлечение информации из Facebook, Twitter, LinkedIn, Instagram, GitHub»

Привет, Хаброжители! В недрах популярных социальных сетей — Twitter, Facebook, LinkedIn и Instagram — скрыты богатейшие залежи информации. Из этой книги исследователи, аналитики и разработчики узнают, как извлекать эти уникальные данные, используя код на Python, Jupyter Notebook или контейнеры Docker. Сначала вы познакомитесь с функционалом самых популярных социальных сетей (Twitter, Facebook, LinkedIn, Instagram), веб-страниц, блогов и лент, электронной почты и GitHub. Затем приступите к анализу данных на примере Twitter. Прочитайте эту книгу, чтобы: Узнать о современном ландшафте социальных сетей; Научиться использовать Docker, чтобы легко оперировать кодами, приведёнными в книге; Узнать, как адаптировать и поставлять код в открытый репозиторий GitHub; Научиться анализировать собираемые данные с использованием возможностей Python 3; Освоить продвинутые приемы анализа, такие как TFIDF, косинусное сходство, анализ словосочетаний, определение клика и распознавание образов; Узнать, как создавать красивые визуализации данных с помощью Python и JavaScript. Читать дальше →

Выбор редакции
10 сентября, 10:13

Несколько штрихов о работе с идентификаторами bigint в R

Каждый раз, когда начинается разговор об использовании различных БД в качестве источника данных, появляется тема идентификаторов записей, объектов или чего-либо иного. Иногда согласование протокола обмена может рассматриваться участниками несколько месяцев. int-bigint-guid, далее по кругу. Для объемных задач, с учетом того, что нативно в R нет поддержки bigint (емкость ~2^64) выбор правильного представления таких идентификаторов может оказаться критичным в части производительности. Есть ли очевидное и универсальное обходное решение? Ниже несколько практических соображений, которые могут применяться в проектах в качестве лакмусовой бумажки. Как правило, идентификаторы будут использоваться для трех классов задач: группировка; фильтрация; объединение. Исходя из этого и оценим различные подходы. Является продолжением предыдущих публикаций. Читать дальше →

Выбор редакции
09 сентября, 16:23

Треугольник Паскаля vs цепочек типа «000…/111…» в бинарных рядах и нейронных сетях

Серия «Белый шум рисует черный квадрат» История цикла этих публикаций начинается с того, что в книге Г.Секей «Парадоксы в теории вероятностей и математической статистике» (стр.43), было обнаружено следующее утверждение: Рис. 1. По анализу комментарий к первым публикациям (часть 1, часть 2) и последующими рассуждениями созрела идея представить эту теорему в более наглядном виде. Большинству из участников сообщества знаком треугольник Паскаля, как следствие биноминального распределения вероятностей и многие сопутствующие законы. Для понимания механизма образования треугольника Паскаля развернем его детальнее, с развертыванием потоков его образования. В треугольнике Паскаля узлы формируются по соотношению 0 и 1, рисунок ниже. Рис. 2. Для понимания теоремы Эрдёша-Реньи составим аналогичную модель, но узлы будут формироваться из значений, в которых присутствуют наибольшие цепочки, состоящие последовательно из одинаковых значений. Кластеризации будет проводиться по следующему правилу: цепочки 01/10, к кластеру «1»; цепочки 00/11, к кластеру «2»; цепочки 000/111, к кластеру «3» и т.д. При этом разобьём пирамиду на две симметричные составляющие рисунок 3. Рис. 3. Первое что бросается в глаза это то, что все перемещения происходят из более низкого кластера в более высокий и наоборот быть не может. Это естественно, так как если цепочка размера j сложилась, то она уже не может исчезнуть. Читать дальше →

04 сентября, 14:04

Визуализация больших графов для самых маленьких

Что делать, если вам нужно нарисовать граф, но попавшиеся под руку инструменты рисуют какой-то комок волос или вовсе пожирают всю оперативную память и вешают систему? За последние пару лет работы с большими графами (сотни миллионов вершин и рёбер) я испробовал много инструментов и подходов, и почти не находил достойных обзоров. Поэтому теперь пишу такой обзор сам. Читать дальше →

Выбор редакции
03 сентября, 10:17

Полезная help-ссылка для работы с данными

Хабр, привет. Представляю вам главную help-ссылку для работы с данными. Материал в Гугл-доке подойдет как профессионалам, так и тем, кто только учится работать с данными. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами. Дальнейшее описание поста — это содержание help-ссылки. Поэтому, можете сразу ознакомиться с документом. Либо начать с её содержания, которую прикрепляю ниже. Конечно, весь список книг/сервисов/видео и лекций в файле неполный. Поэтому предлагаю сделать этот пост ценнейшим — добавляйте в комментарии свои самые полезные ссылки, самые крутые из них я добавлю к себе в файл. Читать дальше →

Выбор редакции
03 сентября, 10:08

Ускоряем распределенную обработку больших графов с помощью вероятностных структур данных и не только

Одним из самых ценных ресурсов любой социальной сети является "граф дружб" — именно по связям в этом графе распространяется информация, к пользователям поступает интересный контент, а к авторам контента конструктивный фидбэк. При этом граф является еще и важным источником информации, позволяющим лучше понять пользователя и непрерывно совершенствовать сервис. Однако в тех случаях когда граф разрастается, технически извлекать из него информацию становится все сложнее и сложнее. В данной статье мы поговорим о некоторых трюках, используемых для обработки больших графов в OK.ru. Читать дальше →

07 июня 2017, 11:18

7 самых дорогих стартапов США

За последние несколько лет мы наблюдаем рост частных компаний стоимостью свыше миллиарда долларов – так называемые "единороги".

06 декабря 2016, 23:09

Глобальный мировой заговор управляется из Кембриджа

До нас в ЖЖ еще не добрались Великие Манипуляторы общественным мнением, уже перевернувшие и продолжающие переворачивать мировые общественные отношения, поэтому мы можем спокойно и независимо прозябать здесь дальше, но точно знать, что, кто и как устроил переворот в нашем социально сетевом мире.Далее выдержки из расследования Das Magazin о том, как Big Data и пара ученых обеспечили победу Трампу и BrexitТехнологии персонализированной рекламы в сети Facebook повлияли на итоги выборов в США и референдума о выходе Великобритании из ЕС.[об этом говорили и писали многократно -- теперь подобрались к этой теме с адресами-паролями-явками]Новейшие технологии стали универсальным оружием, которое переходит из хороших рук в плохие, но чаще из плохих в плохие.Итак, за победой Трампа и Brexit стоят конкретные люди и фирмы.[возможно, сейчас всё это специально выносят на обсуждение, чтобы указать на искусственный (сфабрикованный) характер победы Трампа и Brexit -- и дать как минимум "моральное право" начать Новый крестовый поход]Итак, фамилии:-- Михал Козинский (обеляют)-- Александр Никс -- глава компании Cambridge Analytica (подставляют))Именно они создавали всё новые и новые подходы к работе с Big Data, прежде всего, в Фейсбуке,а также с другими данными, которые оставляют цифровые следы:-- покупками по кредитке,-- запросами в Google,-- прогулками со смартфоном в кармане,-- каждым лайком в соцсети...Началось всё в британском Кембриджском университете [где же еще?] на кафедре психометрии Козинского.Психометрия (иногда называют психографией) представляет собой попытку измерить человеческую личность.В 1980-е годы два психолога доказали, что каждая черта характера может быть измерена при помощи пяти измерений -- т.н. «большой пятерки»:-- открытость (насколько вы готовы к новому?),-- добросовестность (насколько вы перфекционист?),-- экстраверсия (как вы относитесь к социуму?),-- доброжелательность (насколько вы дружелюбны и готовы к сотрудничеству?)-- и нейротизм (насколько легко вас вывести из себя?).На основе этих измерений можно точно понимать, с каким человеком имеешь дело, в чем его желания и страхи, наконец, как он себя может вести.Проблема была в сборе данных: чтобы что-то понять о человеке, от него требовалось заполнить огромный опросник.Но потом появился интернет, затем Facebook, затем Козинский.Далее идет большая часть, как Козинский сотоварищи собирали и анализировали данные.На кафедре несколько лет собирали анкеты множества испытуемых (проводилась серия различных меняющихся он-лайн тестов).Главное было научиться соизмерять личные ценности испытуемых, а также его пол, возраст и место жительства -- с лайками и репостами в Facebook.Исследователи полагают, что научились это делать.Сразу к выводам группы Козинского:-- анализа 68 лайков в Facebook достаточно, чтобы определить цвет кожи испытуемого (с 95% вероятностью),-- его гомосексуальность (88% вероятности)-- приверженность Демократической или Республиканской партии (85% вероятности)Модель начали совершенствовать с 2012 года.В неё добавили опции установления по Фейсбук:-- интеллектуального развития-- религиозных предпочтений-- пристрастия к алкоголю, курению или наркотикам...-- развелись ли родители испытуемого до его совершеннолетия или нет.Модель смогла лучше чем коллеги по работе стала узнавать личность после десяти изученных лайков.После 70 лайков — лучше, чем друг.После 150 лайков — лучше, чем родители.После 300 лайков — лучше, чем партнер.А дальше утверждается, что можно узнать о человеке лучше, чем он сам.В день, когда Козинский опубликовал статью о своей модели, он получил два звонка: жалобу и предложение работы.Оба звонка были из компании Facebook.Козинский и в Facebook продолжил свои исследования.Козинский и команда могут оценивать людейпо Большой пятерке критериевисходя из их юзерпика, фотографии в соцсетяхпо числу друзейпо различным личным данным -- вплоть до данных датчика движения в смартфоне (размахиваем ли мы рукой с ним... как далеко ездим (коррелирует с эмоциональной нестабильностью).Смартфон сам по себе огромный психологический опросник, который мы вольно или невольно заполняем.На основе данных можно не только создавать психологический портрет, но искать среди этих портретов нужные.Например, обеспокоенные папаши, озлобленные интроверты, не определившиеся с выбором -- это сторонники демократов.Козинский изобрел поисковую систему по людям.Он стал ставить предупреждения на всех своих научных публикациях о том, что его методы «могут нести угрозу благополучию, свободе или даже жизни людей».В начале 2014 года, к Козинскому обратился молодой ассистент профессора по имени Александр Коган [не родственник ли мужа В.Нуланд?]У него был запрос от некой фирмы, заинтересованной в методе Козинского.Предложение состояло в том, чтобы проанализировать путем психометрии 10 млн американских пользователей Facebook.С какой целью, собеседник не сказал из соображений конфиденциальности.Козинский сначала согласился, ведь речь идет о больших суммах в пользу его института, но потом начал медлить с согласием.В итоге, он выжал из Когана название фирмы: SCL, Strategic Communications Laboratories («Лаборатории стратегических коммуникаций»).Сайт фирмы предлагает маркетинг на основе психологии и логики, но ставит фокус на влиянии на исход выборов: «Мы являемся глобальной компанией по управлению предвыборными кампаниями».За SCL стоит сложная корпоративная система, завязанная на «налоговых гаванях».Позднее это было показано в «Панамских документах» и разоблачениях Wikileaks [вот эти компании зря немцы сюда воткнули -- захотели вызвать у читателей кумлятивный эффект].Часть этой системыответственна за кризисы в развивающихся странах,другая помогала НАТО разрабатывать методы психологической манипуляции гражданами Афганистана,Одна из дочерних компаний SCL — та самая Cambridge Analytica -- как раз та маленькая фирма, организовавшая интернет-кампании в поддержку Brexit и Трампа.Das Magazin предполагает, что SCL получила данные о методе Козинского именно из рук Когана (тот мог скопировать или выстроить заново его систему, чтобы затем продать ее политтехнологам из SCL).Козинский незамедлительно разрывает связь с Коганом и информирует о ситуации своего институтского начальника [информатора Козинского вывели из-под удара]. Далее совсем детектив:Коган переезжает в Сингапур, женится и называет себя доктором Спектром.Козинский переезжает в Штаты, в Стэнфорд.А в ноябре 2015 года лидер радикальных сторонников Brexit Найджел Фарадж объявил, что его сайт подключает к работе со своей интернет-кампанией некую компанию, специализирующуюся на Big Data, а именно, Cambridge Analytica.Ключевая компетенция фирмы: политический маркетинг нового типа — так называемый «микротаргетинг» — основанный на «методе океана».Козинский начинает получать множество писем — учитывая слова «Кембридж», «океан» и «аналитика», многие думают, что он как-то с этим связан.Однако только тогда он сам узнает о существовании такой компании.Он просматривает сайт фирмы и выясняет, что его методология используется в большой политической игре.В июле 2016 году, уже после референдума по Brexit, на его голову начинают обрушиваться проклятия.Каждый раз Козинскому приходится оправдываться и доказывать, что к той фирме он не имеет никакого отношения.Прошло десять месяцев.19 сентября 2016 год в нью-йоркском отеле Grand Hyatt проходит ежегодный саммит Concordia, мировой экономический форум в миниатюре.Участвует действующий президент Швейцарии Йоханн Шнайдер-Амманн и другие сильные мира .Перед собравшимися выступает Александр Никс -- директора Cambridge Analytica.Многие уже знают, что перед ними новый digital-специалист Трампа.«Скоро вы будете называть меня Мистер Brexit», — таинственно написал Трамп в своем Twitter несколькими неделями ранее.Действительно, политологи уже писали тогда о сходстве программ у Трампа и у сторонников выхода Великобритании из ЕС.И лишь немногие знали о связи Трампа с малоизвестной Cambridge Analytica.До тех пор digital-кампания Трампа состояла более-менее из одного человека: Брэда Парскейла.Маркетинговый энтузиаст и основатель одного провалившегося стартапа, он создал для Трампа простенький веб-сайт за $1500.70-летнего Трампа едва ли можно назвать человеком цифровой эпохи: на его рабочем столе даже компьютера нет.Как однажды поведала его персональная ассистентка, нет даже такого явления, как электронное письмо от Трампа.Сама ассистентка приучила его к смартфону.Хиллари Клинтон, напротив, опиралась на наследие Барака Обамы как первого «президента соцсетей».У нее были адресные листы Демократической партии, миллионы подписчиков, поддержка Google и Dreamworks.Когда в июне 2016 года Трамп нанял Cambridge Analytica, многие в Вашингтоне скорчили мину.Иностранные чуваки в костюмах, которые ничего в этой стране не понимают...«Это честь для меня, уважаемые дамы и господа, рассказывать вам сейчас о силе Big Data и психометрии в избирательной кампании», — говорил на саммите Никс.«Еще пару месяцев назад Тед Круз был одним из наименее одобряемых кандидатов.Всего 40% электората знали его имя».Все присутствовавш ие помнили историю стремительного взлета сенатора-консерватора Круза, едва ли не самое необъяснимое событие предвыборной гонки.Последний из серьезных оппонентов Трампа внутри Республиканской партии буквально выскочил из ниоткуда.«Ну и как же так произошло?» — вопрошал Никс.В конце 2014 года Ccambridge Analytica вошла в предвыборную кампанию в США именно как советник Теда Круза, которого финансировал миллиардер Роберт Мерсер.До тех пор, утверждал Никс, предвыборные кампании велись по демографическим критериям:«Глупейшая идея, если всерьез об этом подумать: все женщины получают одинаковый месседж, потому что они одного пола, все афроамериканцы получают другой посыл, исходя из их расы». Таким дилетантским способом (и тут даже Никсу можно ничего не добавлять) вела кампанию команда Клинтон: разделить общество на формально гомогенные группы, подсказанные социологами.Теми самыми, что до самого конца отдавали ей победу.И тут Никс щелкает на другой слайд: пять лиц, каждое соответствует определенному профилю личности, Большая пятерка измерений.«Мы в Cambridge Analytica разработали модель, которая позволит высчитать личность каждого совершеннолетнего гражданина США», — продолжает Никс.Маркетинговый успех Cambridge Analytica основан на трех китах.Это психологический поведенческий анализ, основанный на «модели океана», изучение Big Data и таргетированная реклама.Последнее означает персонализированную рекламу, а также такую рекламу, которая максимально близко подстраивается под характер отдельного потребителя.Никс искренне объясняет, как его компания этим занимается (лекция доступна на YouTube).Его фирма закупает персональные данные из всех возможных источников: кадастровые списки, бонусные программы, телефонные справочники, клубные карты, газетные подписки, медицинские данные.В США возможно купить почти любые персональные данные.Если вы хотите узнать, допустим, где живут женщины-еврейки, можно спокойно купить базу данных.Затем Cambridge Analytica скрещивает эти данные со списками зарегистрированных сторонников Республиканской партии и данными по лайкам-репостам в Facebook — вот и получается личный профиль по «методу океана». Из цифровых данных вдруг возникают люди со страхами, стремлениями и интересами — и с адресами проживания.Процедура идентична разработанной Козинским модели.Cambridge Analytica также использует IQ-тесты и прочие небольшие приложения, чтобы получать осмысленные лайки от пользователей Facebook.И компания Никса делает то, от чего предостерегал Козинский: «У нас есть психограммы всех совершеннолетних американцев, это 220 млн человек. Наш контрольный центр выглядит так, прошу внимания», — говорит Никс, щелкая слайды.Появляется карта Айовы, где Тед Круз собрал неожиданно большое число голосов на праймериз.На карте видны сотни тысяч маленьких точек: красные и синие, по партийным цветам.Никс выстраивает критерии. Республиканцы — и синие точки исчезают. Еще не определились с выбором — точек становится меньше.Мужчины — еще меньше, и так далее.В итоге, появляется имя одного человека: с возрастом, адресом, интересами, политическими предпочтениями.Но как Cambridge Analytica обрабатывает отдельных людей своим месседжем?В другой презентации Никс рассказал, как на примере закона о свободном распространении оружия: «Для боязливых людей с высоким уровнем нейротизма мы представляем оружие как источник безопасности. Вот, на левой картинке изображена рука взломщика, который разбивает окно. А на правой картинке мы видим мужчину с сыном, которые идут по полю с винтовками навстречу закату. Очевидно, утиная охота. Эта картинка для богатых консерваторов-экстравертов».Противоречивая натура Трампа, его беспринципность и исходящая из этого целая прорва различных сообщений внезапно сыграла ему на руку: для каждого отдельного избирателя свой месседж.«Трамп действует как идеальный оппортунистский алгоритм, который опирается лишь на реакцию публики», — отмечала в августе математик Кэти О’Нил.В день третьих дебатов между Трампом и Клинтон команда Трампа отправила в соцсети (преимущественно, Facebook) свыше 175 тыс. различных вариаций посланий.Они различались лишь в мельчайших деталях, чтобы максимально точно психологически подстроиться под конкретных получателей информации: заголовки и подзаголовки, фоновые цвета, использование фото или видео в посте.Филигранность исполнения позволяет сообщениям находить отклик у мельчайших групп населения, пояснил Das Magazin сам Никс: «Таким способом мы можем дотянуться до нужных деревень, кварталов или домов, даже до конкретных людей».В квартале Маленький Гаити в Майами была запущена информация об отказе Фонда Клинтон участвовать в ликвидации последствий землетрясения в Гаити — чтобы разубедить жителей отдавать свои голоса Клинтон.Это было еще одной целью: удержать электорат Клинтон (например, сомневающихся леваков, афроамериканцев и молодых девушек) от урны для голосования, «подавлять» их выбор, по выражению одного из сотрудников Трампа. Использовались и так называемые «темные посты» Facebook: платные объявления посреди ленты новостей, которые могли попадаться только определенным группам лиц. Например, афроамериканцам показывали посты с видео, на котором Клинтон сравнивала чернокожих мужчин с хищниками.Хиллари Клинтон оказалась одной из жертв антирекламы Cambridge Analytica«Мои дети не смогут больше объяснить, что значит рекламный плакат с одинаковым сообщением для всех и каждого», — завершает Никс свое выступление на саммите Concordia, благодарит за внимание и спускается со сцены.Насколько американское общество в данную конкретную минуту обрабатывается специалистами Трампа, сказать трудно, ведь они крайне редко атакуют на центральных телеканалах, а чаще всего используют социальные сети и цифровое ТВ. И пока команда Клинтон, работавшая по лекалам социологов, пребывает в летаргии, в Сан-Антонио, где располагается «цифровой штаб» Трампа, возникает, по словам корреспондента Bloomberg Саши Иссенберга, «вторая штаб-квартира». Всего дюжина сотрудников Cambridge Analytica получила от Трампа в июле $100 тыс., в августе еще $250 тыс., в сентябре еще $5 млн. По подсчетам Никса, общая сумма оплаты услуг составила $15 млн.Но и проводимые мероприятия тоже радикальны: с июля 2016 года волонтеры кампании Трампа получили приложение, которое подсказывает политические предпочтения и личностные типы жителей того или иного дома. Соответственно, волонтеры-агитаторы модифицировали свой разговор с жителями исходя из этих данных. Обратную реакцию волонтеры записывали в это же приложение — и данные отправлялись прямиком в аналитический центр Cambridge Analytica.Фирма выделяет у американских граждан 32 психотипа, сконцентрировавшись лишь на 17 штатах. И как Козинский выяснил, что мужчины-поконники косметики MAC скорее всего являются гомосексуалами, в Cambridge Analytica доказали, что приверженцы американского автопрома однозначно являются потенциальными сторонниками Трампа. Помимо прочего, подобные открытия помогли самому Трампу понять, какие послания где лучше всего применять. Решение предвыборного штаба сконцентрироваться в последние недели на Мичигане и Висконсине было принято на основе анализа данных. Кандидат стал моделью применения системы.Но насколько велико было влияние психометрии на результат выборов?Cambridge Analytica не спешит предъявлять доказательства успешности своей кампании.Вполне возможно, что это вообще вопрос без ответа.Хотя вот, есть один факт: благодаря поддержке Cambridge Analytica Тед Круз превратился из ничего в серьезнейшего конкурента Трампа на праймериз.Вот рост голосов сельских жителей.Вот сокращение электоральной активности афроамериканцев.Даже тот факт, что Трамп потратил на проект так мало денег, может говорить об эффективности персонализированного продвижения. И даже то, что он пустил три четверти рекламного бюджета в цифровую сферу. Facebook превратился в совершенное оружие и лучшего помощника на выборах, как написал в Twitter один из сподвижников Трампа. К слову, в Германии антиэлитарная «Альтернатива для Германии» имеет в Facebook больше подписчиков, чем ведущие партии ХДС и СДПГ вместе взятые.Кроме того, ни в коей мере нельзя утверждать, что социологи, статистики, проиграли выборы, потому что сильно ошиблись со своими прогнозами. Верно обратное: статистики выиграли, но лишь те, что использовали новейшие методы. Шутка истории: Трамп постоянно критиковал эту науку, но выиграл во многом благодаря ней.Второй победитель — компания Cambridge Analytica. Издатель главного консервативного рупора Breitbart Стив Бэннон входит также в совет директоров этой фирмы. Недавно он был назначен старшим стратегом в команде Трампа. Марион Марешаль Ле Пен, активистка французского «Национального фронта» и племянница лидера партии, уже радостно сообщила о сотрудничестве с компанией, на внутреннем корпоративном видео которой изображено совещание по теме «Италия». По словам Никса, сейчас им заинтересованы клиенты со всего мира. Уже были запросы на сотрудничество из Швейцарии и Германии.тыцМари Ле Пен хочет стать следующим клиентом Cambridge Analytica«Нет, — говорит Козинский. — Тут нет моей вины. Это не я соорудил бомбу, я лишь показал, что они существуют».

06 июля 2016, 13:17

Поисковые системы: Google vs Яндекс

Гости Игорь Ашманов, управляющий партнёр компании «Ашманов и партнёры», Сергей Панков, генеральный директор Ingate Digital Agency, Дмитрий Завалишин, основатель и генеральный директор DZ Systems Подпишитесь на канал РБК: http://www.youtube.com/user/tvrbcnews?sub_confirmation=1 ------------------------ Получайте новости РБК в социальных сетях: Facebook: https://www.facebook.com/rbc.ru Twitter: https://twitter.com/ru_rbc ВКонтакте: https://vk.com/rbc Одноклассники: http://ok.ru/rbc

14 октября 2015, 12:01

На пути к победе в информационной войне

Р.Смирнов в заметке "Коллективное несознательное" приводит примеры топорной работы зарубежного информационного интернационала, которые дают надежду на нашу победу в информационной войнеМногие спрашивают типа, а почему такие тексты забористые.  Отвечаю - сбиваю прицел мозговым дронам ).У нас в России есть одна конторка с офисом на самой дорогой улице мира в домике под номером десять.Вот какой мозговой БПЛА у них есть для публики:PL Platform - Уникальная распределенная платформа сбора, многофакторного анализа и хранения больших массивов данных соцмедиа и онлайн-СМИ. В настоящий момент по социальным медиа идет сбор на русском и еще нескольких языках, возможно масштабирование по языкам. По онлайн-СМИ сбор идет на любых языках.PL Platform хранит архив свыше 20 млрд. сообщений (с 2012 года), ежедневные поступления – около 50 млн. сообщений в сутки.или можете ознакомиться с презентацией относительно старых проектов.http://www.dialog-21.ru/adx/aspx/adxGetMedia.aspx?DocID=2244451e-1bb8-4240-892a-9f5030fe51f6Вот еще их продукт - http://eurekaengine.ru/demo - осуществляющий автоматическое определение отношения текста к любым понятиям.Непрерывно сканируют все социальные сети, форумы, блоги и т.д. на предмет "отношений" т.е. пословица про слово воробей стала как нельзя достоверной.По большому счету это так игрушки.  Если Вы думаете, что не анализируется все, вплоть до распознанных разговоров по мобильному и сообщений, то серьезно ошибаетесь.У взрослых дядь, по образцу которых она делалась - тема уже лет 20 как поставлена на поток, не только для спецуры, но даже и для обычных интересующихся доступы к "коллективному бессознательному" продаются. Юнг обзавидуется.Вот например официальный партнер фейсбука продающий "ключи" к оному - http://datasift.com/Его клиенты:Среди них есть наш старый знакомый LexisNexis.  Короче, как и все в Pax American "бессознательное" это тоже бизнес.Дело не в интернете он лишь облегчает процесс.Наивно полагать, что методики моделирования и управления в совокупности с мощью "денег" не справятся с какими нибудь региональными "ментальными эгрегорами" типа уральского, при отсутствии сопротивления ( позитивный пример которого - Сергей Колясников).Силовики, СМИ, университеты, религиозные, общественные деятели, вопрос только в "акторах" и минимизации ресурсов для достижения цели, ну и самой цели конечно.На примере украины прекрасно видно, как ломается ментальная основа и как можно заставить нормальных людей убивать себе подобных фактически за просто так.Послушное блеяние европеиодов так же один из продуктов деятельности машины запущенной римским клубом (а может и раньше).Честно Вам скажу друзья, я эту математическую хрень не люблю, хотя в нее и не плохо могу, так как считаю, что подобное вмешательство в естественное человеческое уничтожает скажем так божественную искру, а денежно-ментально-цифровое рабство ничуть не лучше той языческой гадости, что была в римской империи.  Тем более, что в основе нового миропорядка отнюдь не атеистический моральный кодекс строителей коммунизма, а штуки гораздо менее атеистические и не приятные. Вскользь прошелся здесь.Также не испытываю особо сильного восторга по поводу курса нашего правительства на интеграцию населения России в эту новую "глобальность", но глядя на некоторые шаги руководства остается надежда на то, что все закончится хорошо. Поживем, как говорится, увидим.Личный же рецепт прост - патриотическое сознание и критическое мышление.Посмотрите каким российским персонажам раздали verified статусы в фейсбуке, вслед за украинскими, где его повесили всем вплоть до командиров батальонов и персонажам вроде Геращенко.Россия все verified аккаунты:https://www.facebook.com/navalnyhttps://www.facebook.com/mikhailkhodorkovskyhttps://www.facebook.com/nakhim.shifrinhttps://www.facebook.com/slobodin.mikhailhttps://www.facebook.com/toloknohttps://www.facebook.com/Damiankudriavtsevhttps://www.facebook.com/nossikhttps://www.facebook.com/sindeevahttps://www.facebook.com/maria.lirainhttps://www.facebook.com/borovoihttps://www.facebook.com/andrey.loshakhttps://www.facebook.com/tintorerohttps://www.facebook.com/skuznhttps://www.facebook.com/krasovkinhttps://www.facebook.com/alena.vladimirskayahttps://www.facebook.com/varfolomeevОсобянчком стоят:https://www.facebook.com/ivan.zassourskyhttps://www.facebook.com/Rasstrigahttps://www.facebook.com/tina.kandelakiОтдельно выданы "медальки" Доренке и буддисту Засурскому, с Тиной Какделаки.  В виду бОльшей адекватности оных попробую поинтересоваться о физическом механизме получения "метки".Даже не разбирающийся в сортах политических деликатесов человек, глядя на этот список патентованной "совести нации", может сделать выводы о назначении "сети", соответственно совет - всегда мойте с мылом руки и мозги после фб.Подытожу - в целом мое мнение, не смотря на бешеную медийную активность клоунов - на выходе пшик, типа как с медузой, "переформатирование"русской шматрицы топорное.Удивляюсь, как и кто им еще что то платит, РИАН кладет их на лопатки одной левой, пока кладет.

03 сентября 2015, 11:34

Когнитивная система IBM Watson: принципы работы с естественным языком

IBM Watson — одна из первых когнитивных систем в мире. Эта система умеет очень многое, благодаря чему возможности Watson используются во многих сферах — от кулинарии до предсказания аварий в населенных пунктах. В общем-то, большинство возможностей Watson не являются чем-то уникальным, но в комплексе все эти возможности представляют собой весьма мощный инструмент для решения разнообразных вопросов. Например — распознавание естественного языка, динамическое обучение системы, построение и оценка гипотез. Все это позволило IBM Watson научиться давать прямые корректные ответы (с высокой степенью достоверности) на вопросы оператора. При этом когнитивная система умеет использовать для работы большие массивы глобальных неструктурированных данных, Big Data. Каковы основные принципы работы IBM Watson с языком? Об этом — в продолжении. Читать дальше →

16 июля 2015, 20:27

Palantir, мафия PayPal, спецслужбы, мировое правительство

«Лучший способ избавиться от дракона — это иметь своего собственного» На Хабре нет ни одного упоминания о Palantir`е, в русской Википедии об этом проекте нет статьи, Mithgol молчит — что-то идет не так. Или так. А между тем Palantir стала второй крупнейшей частной компанией Кремниевой Долины с оценкой в 20 000 000 000$ (уступив Uber). Среди прочих заслуг Palantir`а — раскрытие крупных китайских разведывательных операций Ghostnet и Shadow Network. Журналист: — В «Википедии» говорится, что вы входите в управляющий комитет Бильдербергского клуба. Правда ли это, и если да, чем вы там занимаетесь? Организуете тайное мировое господство? Питер Тиль: — Это правда, хотя все не до такой степени тайно или секретно, чтобы я не мог вам рассказать. Суть в том, что ведется хороший диалог между разными политическими, финансовыми, медиа- и бизнес-лидерами Америки и Западной Европы. Никакого заговора нет. И это проблема нашего общества. Нет секретного плана. У наших лидеров нет секретного плана, как решить все наши проблемы. Возможно, секретные планы – это и плохо, но гораздо возмутительнее, по-моему, отсутствие плана в принципе. Приходится собирать информацию о Palantir`е по крохам. И такая жирная кроха прячется в книге Питера Тиля «От нуля к единице» (хотя в этой книге множество намеков и информации между строк, так же как в легендарном курсе и его переводе на Хабре, спасибо zag2art). Питер Тиль: Цель, которую я ставил перед собой, читая стэнфордский курс о стартапах и предпринимательстве, заключалась в том, чтобы донести все те знания о бизнесе, которые я приобрел за последние 15 лет в Кремниевой долине как инвестор и предприниматель, собрать их воедино. С книгой то же самое. Надеюсь, благодаря этой статье и комментам хабрачитателей, положение дел относительно Palantir`а станет чуточку яснее. (Есть многомиллиардный рынок, связанный с аналитикой и ИБ, а мы ничего про него не знаем.) Читать дальше →

10 февраля 2013, 15:22

принципы Рэя Далио.

Это самое лучшее, что я читал в своей жизни. Почему? Потому что это выглядит так, как будто это я сам написал в 60 лет письмо в прошлое себе 30-летнему, по большому секрету. Написанное Рэем Далио очень живо пересекается с рядом моих философских выводов, которые я успел сделать по жизни. о реальности: dr-mart.livejournal.com/10136.html развитие идей реальности: smart-lab.ru/blog/notes/43.php концепция равновесия: http://smart-lab.ru/blog/mytrading/16591.php формула счастья: smart-lab.ru/blog/notes/31.php работа над ошибками (пример): smart-lab.ru/blog/mtrading/7499.php о роли цели: smart-lab.ru/blog/48396.php о дисциплине: smart-lab.ru/blog/92360.php о независимости мышления: smart-lab.ru/blog/94275.php   Многие мои из описанных выше идей вызывали насмешки у публики. Это видно по комментариям к каждой из записей. Я всегда их читал, но мне честно говоря было наплевать на насмешки, потому что я формировал свое представление об устройстве мира. И вот я встречаю вот это:http://www.bwater.com/Uploads/FileManager/Principles/Bridgewater-Associates-Ray-Dalio-Principles.pdf Это чтиво, которое полностью пересекается с тем, что я вывел до этого. Более того, чтиво более систематизировано и имеет вполне завешенный вид. В отличие от меня, Далио, применяя эти концепции, добился большого успеха в жизни, доказав работу этих принципов. Я немного законспектировал эти принципы и хочу предложить их наиболее думающим из вас. Конспектировал для себя, поэтому местами выглядит сумбурно. ***

10 февраля 2013, 15:22

принципы Рэя Далио.

Это самое лучшее, что я читал в своей жизни. Почему? Потому что это выглядит так, как будто это я сам написал в 60 лет письмо в прошлое себе 30-летнему, по большому секрету. Написанное Рэем Далио очень живо пересекается с рядом моих философских выводов, которые я успел сделать по жизни. о реальности: dr-mart.livejournal.com/10136.html развитие идей реальности: smart-lab.ru/blog/notes/43.php концепция равновесия: http://smart-lab.ru/blog/mytrading/16591.php формула счастья: smart-lab.ru/blog/notes/31.php работа над ошибками (пример): smart-lab.ru/blog/mtrading/7499.php о роли цели: smart-lab.ru/blog/48396.php о дисциплине: smart-lab.ru/blog/92360.php о независимости мышления: smart-lab.ru/blog/94275.php   Многие мои из описанных выше идей вызывали насмешки у публики. Это видно по комментариям к каждой из записей. Я всегда их читал, но мне честно говоря было наплевать на насмешки, потому что я формировал свое представление об устройстве мира. И вот я встречаю вот это:http://www.bwater.com/Uploads/FileManager/Principles/Bridgewater-Associates-Ray-Dalio-Principles.pdf Это чтиво, которое полностью пересекается с тем, что я вывел до этого. Более того, чтиво более систематизировано и имеет вполне завешенный вид. В отличие от меня, Далио, применяя эти концепции, добился большого успеха в жизни, доказав работу этих принципов. Я немного законспектировал эти принципы и хочу предложить их наиболее думающим из вас. Конспектировал для себя, поэтому местами выглядит сумбурно. ***