• Теги
    • избранные теги
    • Компании39
      • Показать ещё
      Разное15
      • Показать ещё
      Издания1
      Страны / Регионы3
      Люди1
19 сентября, 21:21

One of America's Most Powerful Aircraft Carriers Is Getting Upgraded with F-35s

Kris Osborn Security, A really big deal.  The emergence of a first-of-its kind F-35C carrier-launched stealth fighter is intended to give the Navy more combat attack flexibility and attack sophisticated enemy air defenses or fortified targets from a sea-based carrier. Such an ability can allow a maneuvering carrier to hold targets at risk from closer proximity if land-bases are far from the combat vicinity. The 48-month long process, called Refueling Complex Overhaul, is an aircraft carrier mid-life technological boost and refurbishment to include work on the hull, flight-deck, arresting gear, catapults and a rebuilding of the "island house" on the ship, Chris Miner, Vice President, Carrier Program, Huntington Ingalls, told Scout Warrior in an interview. The process involves upgrading and modernizing the nuclear propulsion plant and replacing valves on all of the generators and turbines. All of the ship's electrical systems will upgraded to digital including door locks, generators, sensors and computing. The RCOH also includes the removal of the non-skid coating system from the hangar bay and the 4 ½ acre flight deck.  Major components such as the propellers, shafting, arresting gear engines, the island mast and propulsion plant equipment get removed, replaced or reconfigured with advanced technology. “The arresting gear engines will be removed, shipped to Lakehurst (Navy facility in Lakehurst, N.J.) and refurbished like new. They will be reinstalled into the ship to support another 25 years of service,” Miner added. The RCOH process involves placing several coats of special corrosion-preventing paint on the hull so that it glides more smoothly through the ocean and is less likely to get attachments such as barnacles stuck on. The ship’s galley areas get refurbished and upgraded with improved comforts for sailors. "A lot of areas get stripped down to essentially just the steel structure -- and get reconstructed as though they were new, such as the catapults,” an HII executive explained. Overall, RCOH affords an occasion to execute substantial technological upgrades on the ship such as refueling the ship’s reactors and performing extensive modernization work on more than 2,300 compartments, 600 tanks and hundreds of systems, a Huntington Ingalls statement said. Read full article

26 июля, 14:32

Thermo Fisher (TMO) Beats on Q2 Earnings & Sales Estimates

Thermo Fisher (TMO) rides high in Q2 banking on its analytical instruments segment in particular.

26 апреля, 14:53

Thermo Fisher (TMO) Beats on Q1 Earnings & Sales Estimates

Currently, Thermo Fisher has a Zacks Rank #3 (Hold) but that could change following its promising first-quarter 2017 earnings report which has just released.

Выбор редакции
24 февраля, 17:11

Patent Damages in the Global Supply Chain

The Supreme Court's recent ruling in Life Technologies v. Promega is likely to bring back that staple of the global supply chain: liquidated damages clauses in contracts.

31 января, 15:42

Thermo Fisher (TMO): Tops Q4 Earnings, Misses Revenues

Thermo Fisher (TMO) has posted earnings which has beaten the Zacks Consensus Estimate but its revenues missed the mark.

18 января, 15:40

Will Thermo Fisher (TMO) Beat Earnings Estimates in Q4?

Thermo Fisher Scientific, Inc. (TMO) is scheduled to report fourth-quarter and full-year 2016 results before the opening bell on Jan 31.

11 января, 20:33

«Нам казалось забавным взять и запихнуть погоду в коробку» — Как российский предприниматель прожил 10 месяцев на заводе в Люберцах, чтобы создать визуализатор погоды

Редакция vc.ru пообщалась с сооснователем компании Vibe Life Technologies Григорием Угорским, который вместе с партнером уволился с высокооплачиваемой работы и занялся созданием устройства для визуализации погоды. У предпринимателей не было опыта ни в разработке, ни в конструировании, и в определенный момент у них закончились деньги, поэтому Угорский был вынужден 10 месяцев жить в производственной лаборатории в Люберцах, где они разрабатывали продукт. Однако спустя полтора года после начала работ, партнерам все же удалось создать работающий прототип.

Выбор редакции
05 января, 04:08

Chief Justice Roberts Will Sit Out Patent Case Over $175,000 Stock Conflict

WASHINGTON ― Chief Justice John Roberts will no longer participate in a patent dispute at the Supreme Court involving a unit of Thermo Fisher Scientific Inc., after he realized he owns about $175,000 of stock in the company, the court said on Wednesday. The eight-justice court is weighing whether genetic-testing kits made by Thermo Fisher-owned Life Technologies Corp infringed upon patents held by Promega Corp. In a letter issued on Wednesday, Scott Harris, the clerk of the court, said Roberts belatedly learned that Life Technologies was owned by Thermo Fisher. The letter noted that “the ordinary conflict check conducted in the chief justice’s chamber’s inadvertently failed to find this potential conflict.” Roberts will therefore step aside, meaning only seven of the court’s eight justices will decide the case, which was argued on Dec. 6. Roberts’ 1,212 shares are worth around $175,000 based on the current share price of around $145. Supreme Court justices routinely recuse themselves in cases involving companies in which they own stocks, but each conducts its own checks for potential conflicts. In 2015, Justice Stephen Breyer belatedly spotted a similar stock conflict in an energy case, but instead of recusing, he decided to sell off the stock to cure the conflict before continuing to work on the case. Gabe Roth, the executive director of Fix the Court, a court watchdog that has called for justices to implement better conflict checks, seemed to note a pattern. “This is the third instance in the last 15 months in which a justice initially missed a stock conflict and failed to recuse himself from a case as required by law,” Roth said in a statement. “Why is it so hard for the Supreme Court to get this right?” HuffPost contributed to this report. -- This feed and its contents are the property of The Huffington Post, and use is subject to our terms. It may be used for personal consumption, but may not be distributed on a website.

Выбор редакции
05 января, 04:08

Chief Justice Roberts Will Sit Out Patent Case Over $175,000 Stock Conflict

WASHINGTON ― Chief Justice John Roberts will no longer participate in a patent dispute at the Supreme Court involving a unit of Thermo Fisher Scientific Inc., after he realized he owns about $175,000 of stock in the company, the court said on Wednesday. The eight-justice court is weighing whether genetic-testing kits made by Thermo Fisher-owned Life Technologies Corp infringed upon patents held by Promega Corp. In a letter issued on Wednesday, Scott Harris, the clerk of the court, said Roberts belatedly learned that Life Technologies was owned by Thermo Fisher. The letter noted that “the ordinary conflict check conducted in the chief justice’s chamber’s inadvertently failed to find this potential conflict.” Roberts will therefore step aside, meaning only seven of the court’s eight justices will decide the case, which was argued on Dec. 6. Roberts’ 1,212 shares are worth around $175,000 based on the current share price of around $145. Supreme Court justices routinely recuse themselves in cases involving companies in which they own stocks, but each conducts its own checks for potential conflicts. In 2015, Justice Stephen Breyer belatedly spotted a similar stock conflict in an energy case, but instead of recusing, he decided to sell off the stock to cure the conflict before continuing to work on the case. Gabe Roth, the executive director of Fix the Court, a court watchdog that has called for justices to implement better conflict checks, seemed to note a pattern. “This is the third instance in the last 15 months in which a justice initially missed a stock conflict and failed to recuse himself from a case as required by law,” Roth said in a statement. “Why is it so hard for the Supreme Court to get this right?” HuffPost contributed to this report. -- This feed and its contents are the property of The Huffington Post, and use is subject to our terms. It may be used for personal consumption, but may not be distributed on a website.

10 ноября 2014, 17:32

Биология и информатика: в ожидании третьего прорыва?

Автор: Александр Канапин, к.б.н., глава Отделения вычислительной геномики Кафедры онкологии Оксфордского университета, представитель России в консорциуме ELIXIRВ альтернативной версии истории человечества, представленной в культовом аниме середины 1990-х «Shinseiki Evangelion», землян в 2015 г. ожидает очередной апокалипсис, который готовят ученые, занимающиеся геномикой, клонированием и биоинформатикой. Авторы называют его «третьим ударом» (Third Impact).В середине прошлого века Игорь Тамм, выдающийся физик, лауреат Нобелевской премии, утверждал, что наступающий век будет веком биологии – подобно тому, как XX век был веком физики. Если говорить о привлечении общественного внимания, то ученый, безусловно, оказался прав. Но так ли это с точки зрения прорывов в науке? По аналогии с аниме «Evangelion» можно сказать, что два «удара» или, точнее, прорыва уже состоялись. Ждет ли нас третий прорыв, который может дать принципиально новые знания в фундаментальной науке и принести новые лекарства и методы лечения в практическую медицину?Рассмотрим одну из бурно развивающихся отраслей научного знания – биоинформатику. Как и во многих подобных ей междисциплинарных областях, довольно трудно дать ей строгое определение. В рамках настоящего обзора под биоинформатикой мы будем понимать применение информационных технологий для анализа биологических данных. В альтернативной версии истории человечества, представленной в культовом аниме середины 1990-х «Shinseiki Evangelion», землян в 2015 г. ожидает очередной апокалипсис, который готовят ученые, занимающиеся геномикой, клонированием и биоинформатикой. Авторы называют его «третьим ударом». Ждет ли нас третий прорыв, который может дать принципиально новые знания в фундаментальной науке и принести новые лекарства и методы лечения в практическую медицину?В альтернативной версии истории человечества, представленной в культовом аниме середины 1990-х «Shinseiki Evangelion» («Евангелион нового поколения»), землян в 2015 г. ожидает очередной апокалипсис, который готовят ученые, занимающиеся геномикой, клонированием и биоинформатикой. Авторы называют его «третьим ударом» (Third Impact).В середине прошлого века Игорь Тамм, выдающийся физик, лауреат Нобелевской премии, утверждал, что наступающий век будет веком биологии – подобно тому, как XX век был веком физики. Если говорить о привлечении общественного внимания, то ученый, безусловно, оказался прав. Но так ли это с точки зрения прорывов в науке? По аналогии с аниме «Evangelion» можно сказать, что два «удара» или, точнее, прорыва уже состоялись. Ждет ли нас третий прорыв, который может дать принципиально новые знания в фундаментальной науке и принести новые лекарства и методы лечения в практическую медицину?Рассмотрим одну из бурно развивающихся отраслей научного знания – биоинформатику. Как и во многих подобных ей междисциплинарных областях, довольно трудно дать ей строгое определение. В рамках настоящего обзора под биоинформатикой мы будем понимать применение информационных технологий для анализа биологических данных.Цифры в биологии: от гороха Менделя до персональных геномовИсторически биология складывалась как описательная наука. Например, существенной частью работы Чарльза Дарвина как биолога в его экспедициях были иллюстрации, изображение различных видов животных. С появлением возможности оцифровывать изображения анализ графической информации вернулся в биологию в новом аспекте. В определенном смысле первым биоинформатиком можно считать Грегора Менделя, поскольку он использовал количественные данные для решения чисто биологической задачи: подсчитывая число горошин, имеющих различный фенотип в ряду поколений, он смог сформулировать законы наследственности.Постепенно в биологии появлялось все больше параметров, которые можно было «пересчитать», и к статистической генетике добавились исследования динамики популяций, кинетики биохимических реакций и других процессов, протекающих в биологических системах. Хрестоматийно известная модель системы «хищник – жертва» была одним из первых примеров использования математики для моделирования биологических процессов. Существенным компонентом в этом развитии стало использование численных методов в биофизике для моделирования структуры и динамики биополимеров – белков и нуклеиновых кислот.Такие вычисления, безусловно, требовали значительных компьютерных мощностей, но о выделении биоинформатики в отдельную дисциплину речь не шла до середины 1980-х годов. Первым упоминанием термина «биоинформатика» в названии научной статьи считается работа «Новые направления в биоинформатике» («New Directions in Bioinformatics»), вышедшая в 1989 г.Игорь Тамм, выдающийся физик, лауреат Нобелевской премии, утверждал, что наступающий век будет веком биологии – подобно тому, как XX век был веком физикиВ 1980-х годах в развитии разных наук и технологий наблюдались два тренда: во-первых, стали доступны в больших масштабах (сотни и тысячи) первые последовательности белков и нуклеиновых кислот, во-вторых, появились персональные компьютеры, позволившие биологам анализировать новые типы данных, справиться с которыми вручную было уже сложно. Например, программа PC/GENE, написанная швейцарским биоинформатиком Амосом Байрохом, работала на простейшем персональном компьютере PC/XT с тактовой частотой процессора 4 МГц и позволяла делать практически все, что было тогда нужно молекулярному биологу. Примерно тогда же (1986 г.) А. Байрох создал банк данных белковых последовательностей SwissProt, который и сегодня сохраняет свой статус всемирно известного и надежного информационного ресурса.Не отставали и российские ученые и программисты. Можно вспомнить некоторые из пакетов программ, которые были созданы в начале 1990-х годов и по своей функциональности и инновационности не уступали зарубежным аналогам: GeneBee (МГУ), VOSTORG (Институт цитологии и генетики СО РАН), Samson (Институт математических проблем биологии, г. Пущино) и др. Информационные технологии перестали быть уделом программистов и математиков, что привело к расширению круга биологических задач, решаемых с помощью компьютеров.Таким образом, к середине 1990-х годов биоинформатика заняла достойное место среди других отраслей знания. Признание ее значимости мировой научной общественностью было отмечено появлением мировых центров – «трех китов» биоинформатического мира: Европейского института биоинформатики (European Bioinformatics Institute, EBI, 1992), Национального центра биотехнологической информации США (National Centre for Biotechnological Information, NCBI, 1988 г.) и Банка данных ДНК Японии (DNA Data Bank of Japan, DDBJ, 1986 г.). Следует отметить, что такой «взрывной» рост объема данных касался (и касается в основном до сих пор) преимущественно молекулярной биологии. Биополимеры, хранящие наследственную информацию (ДНК), а также те, которые выступают как непосредственные инструменты в биохимических реакциях в клетке (белки), можно представить как последовательность символов – своего рода букв в том или ином алфавите. Такого рода информация очень легко формализуется для хранения и обработки в вычислительных системах.Объемы данных в современной биологической науке таковы, что без применения информационных технологий их анализ практически невозможен. Наступающая эпоха персональных геномных данных, когда генетический код практически любого человека будет прочитан, делает роль биоинформатики еще весомее.Бессмертны ли телевизоры, или о рекламной наукеДень 26 июня 2000 г., безусловно, вошел в историю не только науки, но и всего человечества: на совместной пресс-конференции Б. Клинтон и Т. Блэр объявили о публикации первой версии генома человека. Ученые в целом трезво оценивали ситуацию, понимая, что прочитанная последовательность генома, все три миллиарда букв-нуклеотидов – это лишь начало. Даже само название статьи, в которой были опубликованы исследования генома, – «Первоначальное секвенирование и анализ генома человека» («Initial Sequencing and Analysis of the Human Genome») – подчеркивало предварительность полученных данных. Авторы прямо заявляли о том, что представляют черновую версию генома человека, предварительные результаты анализа данных. В отличие от ученых политики были настроены гораздо более оптимистично. Так, президент Б. Клинтон, завершая торжественную часть, заметил, что скоро мы будем жить по 150 лет, а наши внуки будут знать слово «рак» только как название созвездия.Однако уже через 3–4 года наступило разочарование. Многие ученые стали говорить о «геномном пузыре», напоминающем «пузыри» биржевых спекуляций. Большинство из них признало, что практического использования этого открытия в медицине придется ждать еще долго, что для этого понадобится не только терпение, но и понимание того, что можно сделать с этими данными.circos.ca Предварительные результаты картирования генома. ENCODE Гены, которые кодируют белки, составляют лишь около 1% от всего генома. Поэтому представлять себе, что получение информации обо всех белках и их генах способно радикально улучшить ситуацию и привести к прорывам в области создания новых лекарств и методов лечения, было бы не вполне правильным.Классический пример – муковисцидоз, наследственная болезнь, вызываемая мутацией в одном из генов, кодирующих регуляторные белки. Примечателен заголовок статьи, опубликованной в журнале «Nature», – «Один ген и двадцать лет» («One Gene, Twenty Years»). Он как бы подчеркивает тот факт, что даже в таком, казалось бы, простом случае, когда известна конкретная «поломка» в гене, вызывающая болезнь, мы все еще далеки от победы над этой болезнью. А если учесть, что большинство заболеваний связано не с одним, а со многими генами, то от радужных надежд на быстрый успех в медицинском применении открытий, связанных с геномом человека, почти ничего не остается.Через три года после публикации генома человека был создан международный консорциум ENCODE (Encyclopedia Of DNA Elements). Главной целью проекта стало детальное описание всех генов и других элементов генома, создание своего рода карты или энциклопедии. В 2012 г. предварительные результаты картирования были опубликованы в большой обзорной статье и в 29 дополнительных статьях, посвященных отдельным биологическим проблемам.По сути, участники консорциума попытались понять, какой функции соответствует тот или иной участок генома человека. Используя экспериментальные техники и методы биоинформатики, они обнаружили, что около 80% последовательности ДНК генома может быть прочитано, и на ее основе может быть синтезирована РНК (этот процесс называется транскрипцией). Если же этот участок хромосомы не считывается, он может быть модифицирован химически, чтобы выполнять функции регулятора, включая или выключая считывание тех или иных участков геномной ДНК. Авторы исследований провели также эволюционный анализ, сравнив между собой геномы различных видов приматов и млекопитающих, и пришли к следующему выводу: если один и тот же участок ДНК похож у разных видов животных, это означает, что в процессе эволюции он изменяется слабо или не изменяется совсем. Следовательно, функция данного участка важна для функционирования клетки или всего организма в целом.Проект ENCODE был, безусловно, важным шагом в исследовании генома человека. Прочитав геном, ученые записали буквы, из которых он состоит. Теперь нужно было понять, какие слова записаны этими буквами, понять фразы этого языка. Однако биологические системы отличаются беспрецедентной сложностью структуры и организации протекающих в них процессов, что исключает возможность простых и быстрых решений.Публикация данных ENCODE вызвала бурное обсуждение в научной среде. Одна из наиболее ироничных и обсуждаемых статей называлась «О бессмертии телевизоров, или что такое “функция” в геноме человека (по евангелию от ENCODE, без эволюции)» («On the Immortality of Television Sets: “Function” in the Human Genome According to the Evolution-Free Gospel of ENCODE»). Авторы статьи резонно замечали, что в публикациях консорциума ENCODE непомерно раздута функциональная сторона проблемы, что утверждение о функциональной значимости 80% генома человека основано на логически противоречивых допущениях, не принимающих в расчет положения теории молекулярной эволюции и другие фундаментальные биологические постулаты.innovaworld.ru Устройство для чтения ДНК (мини- секвенатор) Если функциональность участков генома не поддерживается естественным отбором, они будут накапливать повреждающие мутации и перестанут функционировать. Абсурдная альтернатива этому утверждению, принятая в качестве позиции авторами ENCODE, заключается в том, что они полагают, будто бы повреждающие мутации могут происходить в участках генома, имеющих функциональное значение. Это утверждение равносильно тому, что телевизор, предоставленный сам себе, будет так же работоспособен через миллион лет, поскольку он не будет ржаветь, изнашиваться, подвергаться воздействию разрядов статического электричества или землетрясений.Не преуменьшая глобального значения проектов «Геном человека» и ENCODE, все же следует различать то, что часто называют «рекламной наукой» («publicity science»), и реальное научное знание, которое и ведет к практическому применению открытий.Биологические системы невероятно сложны, и описать простыми словами и уравнениями законы их функционирования пока удается лишь для достаточно простых ситуаций. Дело здесь не только в том, что компьютерные мощности отстают от темпов, с которыми новые технологии производят биологические данные (например, секвенирование нового поколения – next-gen sequencing). Проблемы, с которыми сегодня сталкиваются математики, во многом схожи с теми, которые обнаруживались в физике при смене классической парадигмы на квантовую.Одна из интересных работ по философии науки так и называется: «Математика – новый микроскоп для биологии, только лучше; биология – новая физика для математики, только лучше» («Mathematics Is Biology’s Next Microscope, Only Better; Biology Is Mathematics’ Next Physics, Only Better»). Автор статьи профессор Дж. Коэн описывает десять основных вызовов, с которыми сталкиваются биологи и математики. По его мнению, необходимость анализировать и моделировать сложные биологические системы, от клеток до биоценозов, может привести к созданию новых теорий и алгоритмов в математике и вычислительной технике. Нынешняя ситуация, считает ученый, аналогична той, которая сложилась в физике в начале XX века и привела к созданию квантовой механики и теории относительности.Будущее где-то рядом: от генов к лекарствамИтак, можно сказать, что два прорыва уже состоялись: геном человека и ENCODE. Что можно ожидать в ближайшем будущем – нового прорыва или стагнации?Одним из наиболее заметных изменений в экспериментальной молекулярной биологии стало открытие относительно дешевых методов секвенирования последовательностей ДНК и РНК. Сегодня прочтение полного генома человека может стоить около 1000–1500 долл., при этом цена быстро снижается. Такой прогресс связан с появлением технологий секвенирования нового поколения (Next-Generation Sequencing, NGS). Основной игрок в данном сегменте рынка – компания «Illumina», ее серьезные противники – «Pacific Biosciences» и «Life Technologies» с технологией Ion Torrent. В большинстве этих методик геном разбивается на короткие фрагменты (длиной несколько сотен букв-нуклеотидов), которые очень быстро прочитываются тем или иным физико-химическим способом. Таким образом, геном человека представляется как файл, содержащий несколько десятков миллионов коротких фрагментов.Однако технологии развиваются, и одним из многообещающих выглядит подход, разрабатываемый компанией «Oxford Nanopore». Данная технология еще не вышла из стадии первых тестов, но уже привлекла к себе внимание не только ученых, но и средств массовой информации. Оказалось, что геном можно читать почти целиком, используя USB-устройство, не намного превышающее по размеру обычную флеш-карту. В теории эта технология позволяет прочитывать более длинные фрагменты генома (до 100 тыс. нуклеотидов), но пока точность такого прочтения составляет около 10%. Мини-секвенатор лишь считывает первичные данные, а основная вычислительная работа происходит на облачном сервере компании.microbialchronicles.com Ждет ли нас биоинформатический апокалипсис: большие данные и биобезопасность Прочтение последовательностей генома как набора коротких фрагментов имеет свои ограничения. Пока не существует алгоритмов, способных собрать полную последовательность генома человека из миллионов коротких фрагментов, прочитанных секвенаторами. Поэтому применяемый сегодня анализ называют ресеквенированием. В этом случае все фрагменты генома сравниваются с некой базовой последовательностью, своего рода канонической версией генома, собранной из геномов нескольких людей. Конечно, такая последовательность будет некоторым обобщением, а не реальным геномом конкретного человека. В свою очередь, в процессе ресеквенирования фрагменты индивидуального генома сравниваются с канонической версией, и таким образом находятся различия, которые могут характеризовать именно этого человека или, если сравнивать между собой несколько индивидуальных геномов, группу людей (например, страдающих определенной наследственной болезнью).Ресеквенирование ДНК позволяет понять устройство генома. Для того чтобы узнать, как он работает, используются другие методики, в том числе секвенирование РНК (RNA-Seq). Эта методика помогает определить, «включен» ли в клетке тот или иной ген, производит ли он РНК, на которых синтезируется белок, выполняющий ту или иную функцию. Методики иммунопреципитации хроматина (Chromatin Immuno Precipitation, ChIP) дают возможность понять, как происходит регуляция работы генов, как тот или иной белок «включает» либо «выключает» работу генов, подстраивая работу клетки или организма под изменения внешних условий.Секвенирование – не единственный способ получения биологических данных. Большое распространение получили так называемые биочипы, или ДНК-микрочипы (microarrays). Эта технология была впервые применена к анализу геномов в лаборатории академика А. Мирзабекова и с тех пор широко используется как достаточно дешевая альтернатива методам секвенирования, особенно в медицинской диагностике. Она позволяет быстро определить, несет ли геном пациента мутацию, которая будет влиять на успешность лечения его тем или иным лекарством.Можно также назвать методики, которые непосредственно подсчитывают количество тех или иных молекул в клетках, в частности, технологии нанострун или количественные методы анализа белков с применением масс-спектрометрии.Вернулись в «большую биологию» и рисунки. Компьютерный анализ изображений используется не только в таких очевидных случаях, как диагностика рака по морфологии клеток и тканей, но и в изучении динамики биохимических реакций в клетках на молекулярном уровне.Все перечисленные методики производят огромное количество данных самых разных типов. Разумеется, их обработка, анализ и хранение невозможны без применения компьютеров, и биоинформатика играет здесь первостепенную роль. С одной стороны, речь идет о разработке новых алгоритмов для анализа и интеграции гетерогенных данных. С другой стороны, необходимо решать чисто инженерные проблемы организации хранения и доступа к данным разной степени защищенности (например, к клиническим). Иными словами, третий прорыв (Third Impact) в биоинформатике многие связывают с тем, что называется «Большие данные» (Big Data).* * *Один из основных вызовов, с которыми сталкивается биоинформатика в условиях прогресса в области методик секвенирования геномов, сформулирован в форме своеобразного мема профессором Джорджем Черчем – «геном за тысячу, его интерпретация за миллион» («1K Genome and 1M Interpretation»). Объемы данных растут, но, к сожалению, понимание того, что за ними стоит, все еще очень далеко от того, что необходимо для практического использования, прежде всего в медицине. Во многом это обусловлено тем, какие данные производят современные технологии. Последовательность генома дает статичную картину. Это описание того, с каким набором генетических инструкций родился тот или иной человек. Как эти инструкции будут работать в течение его жизни, какие из них проявят себя (и в какой степени), а какие вообще не будут включены – все это зависит от огромного количества внешних факторов. К тому же из-за того, что сборка de novo полного генома человека из фрагментов секвенирования пока невозможна, анализ данных сводится преимущественно к поиску различий между людьми и через эти различия – к объяснению функции того или иного участка генома. Признаки могут быть либо нейтральными (цвет глаз, группа крови, средний рост), либо патологическими (та или иная наследственная болезнь). Различия в том или ином гене (говоря шире, в участке генома) связаны с тем или иным внешним признаком, и таким образом можно понять его функциональную роль. Безусловно, здесь «Большие данные» имеют большое значение. Чем больше пациентов с той или иной болезнью будет проанализировано, тем надежнее будет статистика, и тем точнее удастся определить генетические маркеры, соответствующие данному заболеванию. Неудивительно, что в настоящее время генетическая диагностика переживает новый бум.Однако от разработки метода диагностики до его внедрения в широкую клиническую практику проходит достаточно много времени. Первые клинические тесты с использованием секвенирования нового поколения были официально одобрены американским агентством по контролю над пищевыми продуктами и лекарственными препаратами (FDA) всего лишь год назад. Это связано с тем, что до сих пор генетические тесты обнаруживают лишь наиболее очевидные и легко объясняемые признаки. Количество пока еще не перешло в качество, и обилие данных о новых участках генома, связанных с патологическими или нормальными признаками, не дает достаточных оснований для прорыва в получении нового биологического знания. Ситуация похожа на ту, которая возникла с прочтением генома человека: ученые просто каталогизируют признаки, приписывая их к разным участкам генома. Это относится не только к секвенированию, но и к другим способам получения данных, таким как биочипы, масс-спектрометрия, анализ изображений. Накопление новой информации происходит лавинообразно, и многое из нее уже получает практическое применение.Оптимизм внушает тот факт, что биология всегда развивалась от накопления данных к их обобщению. Остается надеяться на то, что прорыва придется ждать недолго. Без биоинформатиков, этих «бухгалтеров от биологии», он сейчас невозможен. Источник: РСМД